一.根据渗流理论,只考虑导电剂对正极导电性的影响,具体如公式(1): σ=σc,0(v − vc)t (1) 式中σ为电极电导率,σc,0为CB的电导率,v为CB的体积占比,vc为渗流阈值,t为关键指数。 二.基于多孔电极理论和二维模型,认为正极的导电能力主要取决于固体组分,即不仅要考虑导电剂的影响,活性材料和粘结剂的影响也不容忽视。具体如公式(2): σ= σ0εsp (2) 式中σ为电极电导率,σ0为电极的体积电导率,εs为电极中固相组分占比,p指数值在1.0-1.5之间。 但在具体实际应用过程中,经常会遇到以上两经验性公式所无法解释的现象。来自丰田中央实验室的Hiroki Kondo等以NCA作为活性材料,详细测量了CB含量下电极的电导率,并分别用以上两公式进行了对比分析,最终提炼出能更好预测电极电导率的计算公式,成果以Influence of the Active Material on the Electronic Conductivity of the Positive Electrode in Lithium-Ion Batteries为题发表在Journal of The Electrochemical Society上。 内容解析 图1. NCA电极导电性测试装置 图2. (a-1)CB体积占比与电极导电性关系;(a-2)由图(a-1)拟合得到的曲线斜率与CB质量比的关系曲线;(b-1)CB体积占比与电极导电性关系;(b-2)由图(b-1)拟合得到的曲线斜率与CB质量比的关系曲线。 图3. CB质量比5.35 wt%、NCA密度2.16 g/cm3条件下电极的SEM图像。 图4.低密度和高密度的电极微观结构 图5. (a)和(b)分别为根据公式(3)和公式(4)对导电剂CB在1–10 wt%范围、孔隙率在0.3-0.5范围电极导电性的计算结果。 参考文献:Hiroki Kondo, Hiroshi Sawada, Chikaaki Okuda, Tsuyoshi Sasaki. Influence of the Active Material on the Electronic Conductivity of the Positive Electrode in Lithium-Ion Batteries. Journal of The Electrochemical Society, 166 (8) A1285-A1290 (2019).




特别声明:本站所转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
扫描关注
上海联净官方微信
随时了解最新资讯